
H�bernate Sess�on Comm�t Rollback Save Concepts

What is Hibernate Session?

A Session is used to get a physical connec�on with a database. The Session object is lightweight and designed to be instan�ated each �me an interac�on is

needed with the database. Persistent objects are saved and retrieved through a Session object.

The session objects should not be kept open for a long �me because they are not usually thread safe and they should be created and destroyed them as

needed. The main func�on of the Session is to offer create, read and delete opera�ons for instances of mapped en�ty classes. Instances may exist in one of

the following three states at a given point in �me:

transient: A new instance of a a persistent class which is not associated with a Session and has no representa�on in the database and no iden�fier value is

considered transient by Hibernate.

persistent: You can make a transient instance persistent by associa�ng it with a Session. A persistent instance has a representa�on in the database, an

iden�fier value and is associated with a Session.

detached: Once we close the Hibernate Session, the persistent instance will become a detached instance.

A Session instance is serializable if its persistent classes are serializable. A typical transac�on should use the following idiom:

If the Session throws an excep�on, the transac�on must be rolled back and the session must be discarded.

QUESTION

I have been confused about transaction.rollback . Here is example pseudocode:

What happens when this code works? Do I have the en�ty in the database or not?

ANSWER

When you call session.save(a) Hibernate basically remembers somewhere inside session that this object has to be saved. It can decide if he wants to

issue INSERT INTO... immediately, some �me later or on commit. This is a performance improvement, allowing Hibernate to batch inserts or avoid

them if transac�on is rolled back.

When you call session.flush() , Hibernate is forced to issue INSERT INTO... against the database. The en�ty is stored in the database, but not

yet commi&ed. Depending on transac�on isola�on level it won't be seen by other running transac�ons. But now the database knows about the record.

What session.flush() does is to empty the internal SQL instruc�ons cache, and execute it immediately to the database.

When you call transaction.rollback() , Hibernate rolls-back the database transac�on. Database handles rollback, thus removing newly created

object.

Now consider the scenario without flush() . First of all, you never touch the database so the performance is be3er and rollback is basically a no-op. On

the other hand if transac�on isola�on level is READ UNCOMMITTED , other transac�ons can see inserted record even before commit/rollback. Without

flush() this won't happen, unless Hibernate does not decide to flush() implicitly.

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Session session = factory.openSession();
Transaction tx = null;
try {
 tx = session.beginTransaction();
 // do some work
 ...
 tx.commit();
}
catch (Exception e) {
 if (tx!=null) tx.rollback();
 e.printStackTrace();
}finally {
 session.close();
}

1
2
3
4
5

transaction = session.beginTransaction()
EntityA a = new EntityA();
session.save(a);
session.flush();
transaction.rollback();

QUESTION

I googled a lot and read about org.hibernate.Transaction.commit() and org.hibernate.Session.flush() a lot, know purpose of each

method, but s�ll have a ques�on.

Is it good prac�ce to call org.hibernate.Session.flush() method by hand? As said in org.hibernate.Session docs,

Could you explain me purpose of calling org.hibernate.Session.flush() by hand if org.hibernate.Transaction.commit() will call it

automa�cally?

ANSWER

In the Hibernate Manual you can see this example:

Without the call to the flush method, your first-level cache would throw an OutOfMemoryExcep�on

QUESTION

When we are upda�ng a record, we can use session.flush() with Hibernate. What's the need for flush() ?

ANSWER

Flushing the session forces Hibernate to synchronize the in-memory state of the Session with the database (i.e. to write changes to the database). By

default, Hibernate will flush changes automa�cally for you:

before some query execu�ons

when a transac�on is commi3ed

Allowing to explicitly flush the Session gives finer control that may be required in some circumstances (to get an ID assigned, to control the size of the

Session,...).

QUESTION

If FlushMode.AUTO is set, will Hibernate flush my updated persistent object when I call session.close() ?

I know that session.close() does not normally flush the session but I'm not sure how FlushMode.AUTO affects this.

From the Docs:

FlushMode.AUTO:

The Session is sometimes flushed before query execution in order to ensure that queries never return stale state.

This is the default flush mode.

Does this mean I can rely on Hibernate to verify my changes are flushed some�mes before my session is closed?

Small code example:

1
2

Must be called at the end of a unit of work, before committing the transaction and closing
the session (depending on flush-mode, Transaction.commit() calls this method).

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();

for (int i=0; i<100000; i++) {
 Customer customer = new Customer(.....);
 session.save(customer);
 if (i % 20 == 0) { //20, same as the JDBC batch size
 //flush a batch of inserts and release memory:
 session.flush();
 session.clear();
 }
}

tx.commit();
session.close();

ANSWER

Will Hibernate flush my updated persistent object when calling session.close() (using FlushMode.AUTO)?

No it won't, and you should use a transac�on with well defined boundaries. Quo�ng Non-transac�onal data access and the auto-commit mode

(h3p://community.jboss.org/wiki/Non-transac�onaldataaccessandtheauto-commitmode) : Working nontransac�onally with Hibernate Look at the following

code, which accesses the database without transac�on boundaries:

By default, in a Java SE environment with a JDBC configura�on, this is what happens if you execute this snippet:

1. A new Session is opened. It doesn’t obtain a database connec�on at this point.

2. The call to get() triggers an SQL SELECT. The Session now obtains a JDBC Connec�on from the connec�on pool. Hibernate, by default, immediately turns

off the autocommit mode on this connec�on with setAutoCommit(false). This effec�vely starts a JDBC transac�on!

3. The SELECT is executed inside this JDBC transac�on. The Session is closed, and the connec�on is returned to the pool and released by Hibernate —

Hibernate calls close() on the JDBC Connec�on.

What happens to the uncommi&ed transac�on?

The answer to that ques�on is, "It depends!" The JDBC specifica�on doesn’t say anything about pending transac�ons when close() is called on a connec�on.

What happens depends on how the vendors implement the specifica�on. With Oracle JDBC drivers, for example, the call to close() commits the transac�on!

Most other JDBC vendors take the sane route and roll back any pending transac�on when the JDBC Connec�on object is closed and the resource is returned

to the pool.

Obviously, this won’t be a problem for the SELECT you’ve executed, but look at this varia�on:

This code results in an INSERT statement, executed inside a transac�on that is never commi3ed or rolled back. On Oracle, this piece of code inserts data

permanently; in other databases, it may not. (This situa�on is slightly more complicated: The INSERT is executed only if the iden�fier generator requires it.

For example, an iden�fier value can be obtained from a sequence without an INSERT. The persistent en�ty is then queued un�l flush-�me inser�on — which

never happens in this code. An iden�ty strategy requires an immediate INSERT for the value to be generated.)

Result: use explicit transac�on demarca�on.

1
2
3
4

Session session = HibernateSessionFactory.getSession();
PersistedObject p = session.get(PersistedObject.class,id);
p.setSomeProperty(newValue);
session.close();

1
2
3

Session session = sessionFactory.openSession();
session.get(Item.class, 123l);
session.close();

1
2
3

Session session = getSessionFactory().openSession();
Long generatedId = session.save(item);
session.close();

