
Java Connect�on Pool�ng

The addi�on of JDBC connec�on pooling to your applica�on usually involves li�le or no code modifica�on and can o�en provide significant benefits in

terms of applica�on performance, concurrency and scalability. Improvements such as these can become especially important when your applica�on is

tasked with servicing many concurrent users within the requirements of sub second response �me. By adhering to a small number of rela�vely simple

connec�on pooling best prac�ces your applica�on can quickly and easily take effec�ve advantage of connec�on pooling.

How It Works?

Connec�on pooling creates connec�ons minimum size which is specified in the configura�on se&ngs of the pool. When necessary to increase the

connec�on size to serve mul�ple users at the same �me, the size of the connec�on pooling increased to maximum connec�on size specified in the

configura�on se&ngs of the pool. Connec�on pool simply creates connec�ons to database and never closes them except as required. Therefore, there

wont be performance degrada on. Connec�on pool is generally created at the ini aliza on of a web applica�on or at the main method of a desktop

applica�on as shown in the following codes:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import java.util.Properties;

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.sql.ConnectionPoolDataSource;
import javax.sql.PooledConnection;

public class MainClass {
 public static void main(String[] args) {
 Connection connection = null;
 Statement statement = null;
 ResultSet resultSet = null;

 try {
 connection = getConnection();
 // Do work with connection
 statement = connection.createStatement();
 String selectEmployeesSQL = "SELECT * FROM employees";
 resultSet = statement.executeQuery(selectEmployeesSQL);

 while (resultSet.next()) {
 printEmployee(resultSet);
 }
 } catch (Exception e) {
 e.printStackTrace();
 } finally {
 if (resultSet != null) {
 try {
 resultSet.close();
 } catch (SQLException e) {
 } // nothing we can do
 }
 if (statement != null) {
 try {
 statement.close();
 } catch (SQLException e) {
 } // nothing we can do
 }
 if (connection != null) {
 try {
 connection.close();
 } catch (SQLException e) {
 } // nothing we can do
 }
 }
 }

 private static Connection getConnection() throws NamingException, SQLException {
 InitialContext initCtx = createContext();
 String jndiName = "HrDS";
 ConnectionPoolDataSource dataSource = (ConnectionPoolDataSource) initCtx.lookup(jndiName);
 PooledConnection pooledConnection = dataSource.getPooledConnection();
 return pooledConnection.getConnection(); // Obtain connection from pool
 }

 private static InitialContext createContext() throws NamingException {

So"ware Object Pooling

There are many scenarios in so�ware architecture where some type of object pooling is employed as a technique to improve applica�on performance.

Object pooling is effec ve for two simple reasons:

First, the run �me crea�on of new so�ware objects is o�en more expensive in terms of performance and memory than the reuse of previously created

objects.

Second, garbage collec�on is an expensive process so when we reduce the number of objects to clean up we generally reduce the garbage collec�on load.

As the saying goes, there is no such thing as a free lunch and this maxim is also true with object pooling. Object pooling does require addi�onal overhead

for such tasks as managing the state of the object pool, issuing objects to the applica�on and recycling used objects. Therefore objects that don’t have short

life�mes in your applica�on may not be good choices for object pooling since their low rate of reuse may not warrant the overhead of pooling.

However, objects that do have short life�mes are o�en excellent candidates for pooling. In a pooling scenario your applica�on first creates an object pool

that can both cache pooled objects and issue objects that are not in use back to the applica�on. For example, pooled objects could be database

connec�ons, process threads, server sockets or any other kind of object that may be expensive to create from scratch. As your applica�on first starts asking

the pool for objects they will be newly created but when the applica�on has finished with the object it is returned to the pool rather than destroyed. At this

point the benefits of object pooling will be realized since, now as the applica�on needs more objects, the pool will be able to issue recycled objects that

have previously been returned by the applica�on.

JDBC Connec on Pooling

JDBC connec�on pooling is conceptually similar to any other form of object pooling. Database connec�ons are o�en expensive to create because of the

overhead of establishing a network connec�on and ini�alizing a database connec�on session in the back end database. In turn, connec�on session

ini�aliza�on o�en requires �me consuming processing to perform user authen�ca�on, establish transac�onal contexts and establish other aspects of the

session that are required for subsequent database usage.

Addi�onally, the database's ongoing management of all of its connec�on sessions can impose a major limi�ng factor on the scalability of your applica�on.

Valuable database resources such as locks, memory, cursors, transac�on logs, statement handles and temporary tables all tend to increase based on the

number of concurrent connec�on sessions.

All in all, JDBC database connec�ons are both expensive to ini�ally create and then maintain over �me. Therefore, as we shall see, they are an ideal resource

to pool.

If your applica on runs within a J2EE environment and acquires JDBC connec�ons from an appserver defined datasource then your applica on is probably

already using connec�on pooling. This fact also illustrates an important characteris�c of a best prac�ces pooling implementa�on -- your applica�on is not

even aware it's using it! Your J2EE applica�on simply acquires JDBC connec�ons from the datasource, does some work on the connec�on then closes the

connec�on. Your applica�on's use of connec�on pooling is transparent. The characteris�cs of the connec�on pool can be tweaked and tuned by your

appserver's administrator without the applica�on ever needing to know.

If your applica on is not J2EE based then you may need to inves�gate using a standalone connec on pool manager. Connec�on pool implementa�ons are

available from JDBC driver vendors and a number of other sources.

JDBC Connec on Scope

How should your applica�on manage the life cycle of JDBC connec�ons? Asked another way, this ques�on really asks - what is the scope of the JDBC

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

 Properties env = new Properties();
 env.put(Context.INITIAL_CONTEXT_FACTORY, "com.sun.jndi.rmi.registry.RegistryContextFactory");
 env.put(Context.PROVIDER_URL, "rmi://localhost:1099 (rmi://localhost:1099) ");
 InitialContext context = new InitialContext(env);
 return context;
 }

 private static void printEmployee(ResultSet resultSet) throws SQLException {
 System.out.print(resultSet.getInt("employee_id")+", ");
 System.out.print(resultSet.getString("last_name")+", ");
 System.out.print(resultSet.getString("first_name")+", ");
 System.out.println(resultSet.getString("email"));
 }

}

connec�on object within your applica�on? Let's consider a servlet that performs JDBC access. One possibility is to define the connec�on with servlet scope

as follows.

Using this approach the servlet creates a JDBC connec�on when it is loaded and destroys it when it is unloaded. The doGet() method has immediate access

to the connec�on since it has servlet scope. However the database connec on is kept open for the en re life me of the servlet and that the database will

have to retain an open connec�on for every user that is connected to your applica�on. If your applica�on supports a large number of concurrent users its

scalability will be severely limited!

Method Scope Connec ons

To avoid the long life �me of the JDBC connec�on in the above example we can change the connec�on to have method scope as follows.

This approach represents a significant improvement over our first example because now the connec�on's life �me is reduced to the �me it takes to execute

doGet(). The number of connec�ons to the back end database at any instant is reduced to the number of users who are concurrently execu�ng doGet().

However this example will create and destroy a lot more connec ons than the first example and this could easily become a performance problem.

In order to retain the advantages of a method scoped connec�on but reduce the performance hit of crea ng and destroying a large number of connec�ons

we now u lize connec on pooling to arrive at our finished example that illustrates the best prac�ces of connec�ng pool usage.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

import java.sql.*;

public class JDBCServlet extends HttpServlet {

 private Connection connection;

 public void init(ServletConfig c) throws ServletException {
 //Open the connection here
 }

 public void destroy() {
 //Close the connection here
 }

 public void doGet (HttpServletRequest req, HttpServletResponse res) throws ServletException {
 //Use the connection here
 Statement stmt = connection.createStatement();
 ..<do JDBC work>..
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

public class JDBCServlet extends HttpServlet {

 private Connection getConnection() throws SQLException {
 ..<create a JDBC connection>..
 }

 public void doGet (HttpServletRequest req, HttpServletResponse res) throws ServletException {
 try {
 Connection connection = getConnection();
 ..<do JDBC work>..
 connection.close();
 }
 catch (SQLException sqlException) {
 sqlException.printStackTrace();
 }
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14

import java.sql.*;
import javax.sql.*;

public class JDBCServlet extends HttpServlet {

 private DataSource datasource;

 public void init(ServletConfig config) throws ServletException {
 try {
 // Look up the JNDI data source only once at init time
 Context envCtx = (Context) new InitialContext().lookup("java:comp/env");
 datasource = (DataSource) envCtx.lookup("jdbc/MyDataSource");
 }
 catch (NamingException e) {

This approach uses the connec�on only for the minimum �me the servlet requires it and also avoids crea ng and destroying a large number of physical

database connec�ons. The connec�on best prac�ces that we have used are:

a. JNDI datasource is used as a factory for connec�ons. The JNDI datasource is instan�ated only once in init() since JNDI lookup can also be slow. JNDI

should be configured so that the bound datasource implements connec�ng pooling. Connec�ons issued from the pooling datasource will be returned to the

pool when closed.

b. We have moved the connec on.close() into a finally block to ensure that the connec�on is closed even if an excep on occurs during the doGet() JDBC

processing. This prac�ce is essen al essen�al when using a connec on pool. If a connec on is not closed it will never never be returned to the connec�on

pool and not become available for reuse. A finally block can also guarantee the closure of resources a�ached to JDBC statements and result sets when

unexpected excep�ons occur. Just call close() on these objects also.

Connec on Pool Tuning

One of the major advantages of using a connec�on pool is that characteris�cs of the pool can be changed without affec�ng the applica�on. If your

applica�on confines itself to using generic JDBC you could even point it at a different vendor's database without changing any code! Different pool

implementa�ons will provide different se�able proper�es to tune the connec�on pool. Typical proper�es include the number of ini�al connec�ons, the

minimum and maximum number of connec�ons that can be present at any �me and a mechanism to purge connec�ons that have been idle for a specific

period of �me.

In general, op mal performance is a�ained when the pool in its steady state contains just enough connec�ons to service all concurrent connec�on

requests without having to create new physical database connec�ons. If the pooling implementa�on supports purging idle connec�ons it can op�mize its

size over �me to accommodate varying applica on loads over the course of a day. For example, scaling up the number of connec�ons cached in the pool

during business hours then dynamically reducing the pool size a�er business hours.

Benefits:

It allows you to have many connec�ons open, so when a thread needs one it can reverse the connec�on for use, when this thread finish he return the

connec�on so it can be used in other threads (without without having to open and close the connec�on every me). In this way if you have a connec�on

available a thread does not has to wait un�l another finish. As you can see is up to your app needs, I would advise you to analyze what you need first and

then you can choose if you will use a connec�on pool or not.

Also it depends if you are going to do two or more queries into the database at the same �me, in this case you should use the connec�on pool. Although the

applica�on only makes one query at the same �me and does not require to be used for long periods of �me, you should not worry about it, and just keep

the connec�on open un�l you close the app.

Using a pool connec�on you will have mul�ples connec�on that you can assign to a thread, if a thread is using one of the connec�ons this connec�on can't

be used in another thread, however since you have mul�ple connec�ons you can assign another one to this thread, whenever you are done whit the

connec�on you just "close it" (which it does not really close it, the connec�on it's just returned to the pool, so you can assign it to another thread)

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

 e.printStackTrace();
 }
 }

 private Connection getConnection() throws SQLException {
 return datasource.getConnection();
 }

 public void doGet (HttpServletRequest req, HttpServletResponse res) throws ServletException {
 Connection connection=null;
 try {
 connection = getConnection();
 ..<do JDBC work>..
 }
 catch (SQLException sqlException) {
 sqlException.printStackTrace();
 }
 finally {
 if (connection != null)
 try {connection.close();} catch (SQLException e) {}
 }
 }
 }
}

If you decide to use just one connec�on, you won't be able to use this connec�on in more than one thread.

 1. How does we make sure that connection pool doesn't return the same object which is already in use?

Because if a connec�on has been borrowed from the pool and not returned yet, it's just not in the pool and can't be assigned to another client of the pool

(resources are removed from the pool un�l they are returned).

 2.How happens if client closed the connection after taking it out from Connection pool?

The connec�on a client gets from a pool is not really a java.sql.Connection (h�p://java.sun.com/javase/6/docs/api/java/sql/Connec�on.html) , it's a

wrapper (a proxy) for a java.sql.Connection (h�p://java.sun.com/javase/6/docs/api/java/sql/Connec�on.html) that customizes the behavior of

some methods. The close() method is one of them and does not close the Connection instance but returns it to the pool.

JDBC Connec on Pool Se7ngs

For op�mum performance of database-intensive applica�ons, tune the JDBC Connec�on Pools managed by the Applica�on Server. These connec�on pools

maintain numerous live database connec�ons that can be reused to reduce the overhead of opening and closing database connec�ons. This sec�on

describes how to tune JDBC Connec�on Pools to improve performance.

J2EE applica�ons use JDBC Resources to obtain connec�ons that are maintained by the JDBC Connec�on Pool. More than one JDBC Resource is allowed to

refer to the same JDBC Connec�on Pool. In such a case, the physical connec�on pool is shared by all the resources.

Monitoring JDBC Connec on Pools

As the crea�on of JDBC connec�ons are expensive and frequently cause performance bo�lenecks in applica�ons, it is crucial to monitor how a JDBC

connec�on pool is releasing and crea�ng new connec�ons, and how many threads are wai�ng to retrieve a connec�on from a par�cular pool. Sta�s�cs-

gathering is enabled by default for JDBC Connec�on Pools. The following a�ributes are monitored:

averageConnWaitTime (count): Average wait �me of connec�ons for successful connec�on request a�empts to the connector connec�on pool.

connec onRequestWaitTime (range): The longest and shortest wait �mes of connec�on requests.

numConnAcquired (count): Number of logical connec�ons acquired from the pool.

numConnCreated (count): Number of physical connec�ons created since the last reset.

numConnDestroyed (count): Number of physical connec�ons destroyed since the last reset.

numConnFailedValida on (count): Number of connec�ons that failed valida�on.

numConnFree (count): Number of free connec�ons in the pool.

numConnReleased (count): Number of logical connec�ons released to the pool.

numConnTimedOut (bounded range): Number of connec�ons in the pool that have �med out.

numConnUsed (range): Number of connec�ons that have been used.

waitQueueLength (count): Number of connec�on requests in the queue wai�ng to be serviced.

To get the sta�s�cs, use these commands:

Tuning JDBC Connec on Pools

Set JDBC Connec�on Pool a�ributes with the Admin Console under Resources > JDBC > Connec�on Pools > PoolName. The following a�ributes affect

1
2
3

asadmin get --monitor=true
serverInstance.resources.jdbc-connection-pool.*asadmin get
--monitor=true serverInstance.resources.jdbc-connection-pool. poolName.* *

performance:

Pool Size Se&ngs

Timeout Se&ngs

Isola�on Level Se&ngs

Connec�on Valida�on Se&ngs

Pool Size Se7ngs

The following se&ngs control the size of the connec�on pool:

Ini al and Mimimum Pool Size

Size of the pool when created, and its minimum allowable size.

Maximum Pool Size

Upper limit of size of the pool.

Pool Resize Quan ty

Number of connec�ons to be removed when the idle �meout expires. Connec�ons that have idled for longer than the �meout are candidates for removal.

When the pool size reaches the ini�al and minimum pool size, removal of connec�ons stops.

The following table summarizes pros and cons to consider when sizing connec�on pools.

Connec�on pool Pros Cons

Small Connec�on

pool
Faster access on the connec�on table

May not have enough connec�ons to sa�sfy

requests.

Requests may spend more �me in the

queue

Large Connec�on

pool

More connec�ons to fulfill requests

Requests will spend less (or no) �me in

the queue

Slower access on the connec�on table.

Timeout Se7ngs

There are two �meout se&ngs:

Max Wait Time: Amount of �me the caller (the code reques�ng a connec�on) will wait before ge&ng a connec�on �meout. The default is 60 seconds. A

value of zero forces caller to wait indefinitely.

To improve performance set Max Wait Time to zero(0). This essen�ally blocks the caller thread un�l a connec�on becomes available. Also, this allows the

server to alleviate the task of tracking the elapsed wait �me for each request and increases performance.

Idle Timeout: Maximum �me in seconds that a connec�on can remain idle in the pool. A�er this �me, the pool can close this connec�on. This property

does not control connec�on �meouts on the database server.

Keep this �meout shorter than the database server �meout (if such �meouts are configured on the database), to prevent accumula�on of unusable

connec�on in Applica�on Server.

For best performance, set idle �meout to zero(0) seconds, so that idle connec�ons will not be removed. This ensures that there is normally no penalty in

crea�ng new connec�ons and disables the idle monitor thread. However, there is a risk that the database server will reset a connec�on that is unused for

too long.

Isola on Level Se7ngs

Two se&ngs control the connec�on pool’s transac�on isola�on level on the database server:

Transac on Isola on Level: specifies the transac�on isola�on level of the pooled database connec�ons. If this parameter is unspecified, the pool uses the

default isola�on level provided by the JDBC Driver.

Isola on Level Guaranteed: Guarantees that every connec�on obtained from the pool has the isola�on specified by the Transac�on Isola�on Level

parameter. Applicable only when the Transac�on Isola�on Level is specified. The default value is true.

This se&ng can have some performance impact on some JDBC drivers. Set to false when certain that the applica�on does not change the isola�on level

before returning the connec�on.

Avoid specifying Transac�on Isola�on Level. If that is not possible, consider se&ng Isola�on Level Guaranteed to false and make sure applica�ons do not

programma�cally alter the connec�ons’ isola�on level.

If you must specify isola�on level, specify the best-performing level possible. The isola�on levels listed from best performance to worst are:

1. READ_UNCOMMITTED

2. READ_COMMITTED

3. REPEATABLE_READ

4. SERIALIZABLE

Choose the isola�on level that provides the best performance, yet s�ll meets the concurrency and consistency needs of the applica�on.

Connec on Valida on Se7ngs

The following se&ngs determine whether and how the pool performs connec�on valida�on.

Connec on Valida on Required

If true, the pool validates connec�ons (checks to find out if they are usable) before providing them to an applica�on.

If possible, keep the default value, false. Requiring connec�on valida on forces the server to apply the valida�on algorithm every me the pool returns a

connec�on, which adds overhead to the latency of getConnec on(). If the database connec�vity is reliable, you can omit valida on.

Valida on Method

Type of connec�on valida�on to perform. Must be one of:

auto-commit: a�empt to perform an auto-commit on the connec�on.

metadata: a�empt to get metadata from the connec�on.

table (performing a query on a specified table). Must also set Table Name. You may have to use this method if the JDBC driver caches calls to

setAutoCommit() and getMetaData().

Not: Because many JDBC drivers cache the results of these calls, they do not always provide reliable valida�ons. Check with the driver vendor to determine

whether these calls are cached or not.

Table Name

Table name to query when Valida�on Method is “table.”

Close All Connec ons On Any Failure

Whether to close all connec�ons in the pool if a single valida�on check fails. The default is false. One a�empt will be made to re-establish failed

connec�ons.

