
Java Swing MVC Usage

A Swing Architecture Overview

The Inside Story on JFC Component Design

Original article: http://www.oracle.com/technetwork/java/architecture-142923.html

 Most Swing developers know by now that Swing components have a separable model-and-view design. And many Swing users
have run across articles saying that Swing is based on something called a "modified MVC (model-view-controller) architecture."

 But accurate explanations of how Swing components are designed, and how their parts all fit together, have been hard to come by
-- until now.

 The silence ends with the publication of this article, a major white paper on Swing component design. It provides a comprehensive
technical overview of Swing's modified MVC structure and demystifies many other facets of Swing component architecture as well.

This document presents a technical overview of the Swing component architecture. In particular, it covers the following areas in detail:

 Design goals
 Roots in MVC
 Separable model architecture
 Pluggable look-and-feel architecture

Design Goals

The overall goal for the Swing project was:

To build a set of extensible GUI components to enable developers to more rapidly develop powerful Java front ends for commercial
applications.

To this end, the Swing team established a set of design goals early in the project that drove the resulting architecture . These guidelines
mandated that Swing would:

 Be implemented entirely in Java to promote cross-platform consistency and easier maintenance.
 Provide a single API capable of supporting multiple look-and-feels so that developers and end-users would not be locked into a
single look-and-feel.
 Enable the power of model-driven programming without requiring it in the highest-level API.
 Adhere to JavaBeans design principles to ensure that components behave well in IDEs and builder tools.
 Provide compatibility with AWT APIs where there is overlapping, to leverage the AWT knowledge base and ease porting.

Roots in MVC

Swing architecture is rooted in the model-view-controller (MVC) design that dates back to SmallTalk . MVC architecture calls for a
visual application to be broken up into three separate parts:

 A model that represents the data for the application.
 The view that is the visual representation of that data.
 A controller that takes user input on the view and translates that to changes in the model.

Early on, MVC was a logical choice for Swing because it provided a basis for meeting the first three of our design goals within the
bounds of the latter two.

The first Swing prototype followed a traditional MVC separation in which each component had a separate model object and delegated
its look-and-feel implementation to separate view and controller objects.

The delegate

We quickly discovered that this split didn't work well in practical terms because the view and controller parts of a component required
a tight coupling (for example, it was very difficult to write a generic controller that didn't know specifics about the view). So we
collapsed these two entities into a single UI (user-interface) object, as shown in this diagram:

http://www.oracle.com/technetwork/java/architecture-142923.html

(The UI delegate object shown in this picture is sometimes called a delegate object, or UI delegate. The UI delegate used in Swing is
described in more detail in the Pluggable look-and-feel section of this article, under the subheading " The UI delegate ".)

As the diagram illustrates, Swing architecture is loosely based -- but not strictly based -- on the traditional MVC design. In the world of
Swing, this new quasi-MVC design is sometimes referred to a separable model architecture.

Swing's separable model design treats the model part of a component as a separate element, just as the MVC design does. But Swing
collapses the view and controller parts of each component into a single UI (user-interface) object.

To MVC or not to MVC?

One noteworthy point is that as an application developer, you should think of a component's view/controller responsibilities as being
handled by the generic component class (such as. JButton, JTree, and so on). The component class then delegates the look-and-feel-
specific aspects of those responsibilities to the UI object that is provided by the currently installed look-and-feel.

For example, the code that implements double-buffered painting is in Swing's JComponent class (the "mother" of most Swing
component classes), while the code that renders a JButton's label is in the button's UI delegate class. The preceding diagram illustrates
this subtle (and often confusing) point:

So Swing does have a strong MVC lineage. But it's also important to reiterate that our MVC architecture serves two distinct purposes:

 First, separating the model definition from a component facilitates model-driven programming in Swing.
 Second, the ability to delegate some of a component's view/controller responsibilities to separate look-and-feel objects provides
the basis for Swing's pluggable look-and-feel architecture.

Although these two concepts are linked by the MVC design, they may be treated somewhat orthogonally from the developer's
perspective. The remainder of this document will cover each of these mechanisms in greater detail.

Separable model architecture

It is generally considered good practice to center the architecture of an application around its data rather than around its user
interface. To support this paradigm, Swing defines a separate model interface for each component that has a logical data or value
abstraction. This separation provides programs with the option of plugging in their own model implementations for Swing components.

The following table shows the component-to-model mapping for Swing.

Component Model Interface Model Type

JButton ButtonModel GUI

JToggleButton ButtonModel GUI/data

JCheckBox ButtonModel GUI/data

JRadioButton ButtonModel GUI/data

JMenu ButtonModel GUI

JMenuItem ButtonModel GUI

JCheckBoxMenuItem ButtonModel GUI/data

JRadioButtonMenuItem ButtonModel GUI/data

JComboBox ComboBoxModel data

JProgressBar BoundedRangeModel GUI/data

JScrollBar BoundedRangeModel GUI/data

JSlider BoundedRangeModel GUI/data

JTabbedPane SingleSelectionModel GUI

JList ListModel data

JList ListSelectionModel GUI

JTable TableModel data

JTable TableColumnModel GUI

JTree TreeModel data

JTree TreeSelectionModel GUI

JEditorPane Document data

JTextPane Document data

JTextArea Document data

JTextField Document data

JPasswordField Document data

GUI-state vs. application-data models

The models provided by Swing fall into two general categories: GUI-state models and application-data models.

GUI-state models

GUI state models are interfaces that define the visual status of a GUI control, such as whether a button is pressed or armed, or which
items are selected in a list. GUI-state models typically are relevant only in the context of a graphical user interface (GUI). While it is
often useful to develop programs using GUI-state model separation -- particularly if multiple GUI controls are linked to a common state
(such as in a shared whiteboard program), or if manipulating one control automatically changes the value of another -- the use of GUI-
state models is not required by Swing. It is possible to manipulate the state of a GUI control through top-level methods on the
component, without any direct interaction with the model at all. In the preceding table, GUI-state models in Swing are highlighted in
blue.

Application-data models

An application-data model is an interface that represents some quantifiable data that has meaning primarily in the context of the
application, such as the value of a cell in a table or the items displayed in a list. These data models provide a very powerful
programming paradigm for Swing programs that need a clean separation between their application data/logic and their GUI. For truly
data-centric Swing components, such as JTree and JTable, interaction with the data model is strongly recommended. Application-data
models are highlighted in red in the table presented at the beginning of this section.

Of course with some components, the model categorization falls somewhere in between GUI state models and application-data
models, depending on the context in which the model is used. This is the case with the BoundedRangeModel on JSlider or
JProgressBar. These models are highlighted in purple in the preceding table.

Swing's separable model API makes no specific distinctions between GUI state models and application-data models; ho wever, we have
clarified this difference here to give developers a better understanding of when and why they might wish to program with the
separable models.

Shared model definitions

Referring again to the table at the beginning of this section, notice that model definitions are shared across compone nts in cases
where the data abstraction for each component is similar enough to support a single interface without over-genericizing that interface.
Common models enable automatic connectability between component types. For example, because both JSlider and JScrollbar use the
BoundedRangeModel interface, a single BoundedRangeModel instance could be plugged into both a JScrollbar and a JSlider and their
visual state would always remain in sync.

The separable-model API

Swing components that define models support a JavaBeans bound property for the model. For example, JSlider uses the
BoundedRangeModel interface for its model definition. Consequently, it includes the following methods:

1
2

public BoundedRangeModel getModel()
public void setModel(BoundedRangeModel model)

All Swing components have one thing in common: If you don't set your own model, a default is created and installed internally in the
component. The naming convention for these default model classes is to prepend the interface name with "Default." For JSlider, a
DefaultBoundedRangeModel object is instantiated in its constructor:

1
2

public JSlider(int orientation, int min, int max, int value)
{

3
4
5
6
7
8

 checkOrientation(orientation);
 this.orientation= orientation;
 this.model= new DefaultBoundedRangeModel(value, 0, min, max);
 this.model.addChangeListener(changeListener);
 updateUI();
}

If a program subsequently calls setModel(), this default model is replaced, as in the following example:

1
2
3
4
5
6
7
8

JSlider slider = new JSlider();
BoundedRangeModel myModel = new DefaultBoundedRangeModel() {
 public void setValue(int n) {
 System.out.println("SetValue: "+ n);
 super.setValue(n);
 }
});
slider.setModel(myModel);

For more complex models (such as those for JTable and JList), an abstract model implementation is also provided to enable developers
to create their own models without starting from scratch. These classes are prepended with "Abstract".

For example, JList's model interface is ListModel , which provides both DefaultListModel and AbstractListModel classes to help the
developer in building a list model.

Model change notification

Models must be able to notify any interested parties (such as views) when their data or value changes. Swing models use the JavaBeans
Event model for the implementation of this notification. There are two approaches for this notification used in Swing:

 Send a lightweight notification that the state has "changed" and require the listener to respond by sending a query back to the
model to find out what has changed. The advantage of this approach is that a single event instance can be used for all notifications
from a particular model -- which is highly desirable when the notifications tend to be high in frequency (such as when a JScrollBar is
dragged).
 Send a stateful notification that describes more precisely how the model has changed. This alternative requires a new event
instance for each notification. It is desirable when a generic notification doesn't provide the listener with enough information to
determine efficiently what has changed by querying the model (such as when a column of cells change value in a JTable).

Lightweight notification

The following models in Swing use the lightweight notification, which is based on the ChangeListener/ChangeEvent API:

Model Listener Event

BoundedRangeModel ChangeListener ChangeEvent

ButtonModel ChangeListener ChangeEvent

SingleSelectionModel ChangeListener ChangeEvent

The ChangeListener interface has a single generic method:

1 public void stateChanged(ChangeEvent e)

The only state in a ChangeEvent is the event "source." Because the source is always the same across notifications, a single instance can
be used for all notifications from a particular model. Models that use this mechanism support the following methods to add and
remove ChangeListeners:

1
2

public void addChangeListener(ChangeListener l)
public void removeChangeListener(ChangeListener l)

Therefore, to be notified when the value of a JSlider has changed, the code might look like this:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

JSlider slider = new JSlider();
BoundedRangeModel model = slider.getModel();
model.addChangeListener(new ChangeListener() {

 public void stateChanged(ChangeEvent e) {

 // need to query the model

 // to get updated value...

 BoundedRangeModel m =

 (BoundedRangeModel)e.getSource();

 System.out.println("model changed: " +

 m.getValue());

 }
});

To provide convenience for programs that don't wish to deal with separate model objects, some Swing component classes also provide
the ability to register ChangeListeners directly on the component (so the component can listen for changes on the model internally and
then propagates those events to any listeners registered directly on the component). The only difference between these notifications is
that for the model case, the event source is the model instance, while for the component case, the source is the component.

So we could simplify the preceding example to:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

JSlider slider = new JSlider();
slider.addChangeListener(new ChangeListener() {

 public void stateChanged(ChangeEvent e) {

 // the source will be

 // the slider this time..

 JSlider s = (JSlider)e.getSource();

 System.out.println("value changed: " +

 s.getValue());

 }
});

Stateful notification

Models that support stateful notification provide event Listener interfaces and event objects specific to their purpose. The following
table shows the breakdown for those models:

Model Listener Event

ListModel ListDataListener ListDataEvent

ListSelectionModel ListSelectionListener ListSelectionEvent

ComboBoxModel ListDataListener ListDataEvent

TreeModel TreeModelListener TreeModelEvent

TreeSelectionModel TreeSelectionListener TreeSelectionEvent

TableModel TableModelListener TableModelEvent

TableColumnModel TableColumnModel-Listener TableColumnModel-Event

Document DocumentListener DocumentEvent

Document UndoableEditListener UndoableEditEvent

The usage of these APIs is similar to the lightweight notification, except that the listener can query the event object directly to find out
what has changed. For example, the following code dynamically tracks the selected item in a JList:

1
2
3
4
5
6
7
8
9
10
11
12
13

String items[] = {"One", "Two", "Three");
JList list = new JList(items);
ListSelectionModel sModel = list.getSelectionModel();
sModel.addListSelectionListener(new ListSelectionListener() {
 public void valueChanged(ListSelectionEvent e) {
 // get change information directly
 // from the event instance...
 if (!e.getValueIsAdjusting()) {
 System.out.println("selection changed: " +
 e.getFirstIndex());
 }
 }
 });

Automatic View Updates

A model does not have any intrinsic knowledge of the view that represents it. (This requirement is critical to enable multiple views on
the same model). Instead, a model has only a list of listeners interested in knowing when its state has changed. A Swing component
takes responsibility for hooking up the appropriate model listener so that it can appropriately repaint itself as the model changes (if
you find that a component is not updating automatically when the model changes, it is a bug!). This is true whether a default internal
model is used or whether a program installs its own model implementation.

Ignoring models completely

As mentioned previously, most components provide the model-defined API directly in the component class so that the component can
be manipulated without interacting with the model at all. This is considered perfectly acceptable programming practice (especially for
the GUI-state models). For example, following is JSlider's implementation of getValue(), which internally delegates the method call to
its model:

1
2
3

public int getValue() {
 return getModel().getValue();
}

And so programs can simply do the following:

1
2
3

JSlider slider = new JSlider();
int value = slider.getValue();
//what's a "model," anyway?

Separable model summary

So while it's useful to understand how Swing's model design works, it isn't necessary to use the model API for all aspects of Swing
programming. You should carefully consider your application's individual needs and determine where the model API will enhance your
code without introducing unnecessary complexity.

In particular, we recommend the usage of the Application-Data category of models for Swing (models for JTable, JTree, and the like)
because they can greatly enhance the scalability and modularity of your application over the long run.

Pluggable look-and-feel architecture

Swing's pluggable look-and-feel architecture allows us to provide a single component API without dictating a particular look-and-feel.
The Swing toolkit provides a default set of look-and-feels; however, the API is "open" -- a design that additionally allows developers to
create new look-and-feel implementations by either extending an existing look-and-feel or creating one from scratch. Although the
pluggable look-and-feel API is extensible, it was intentionally designed at a level below the basic component API in such a way that a

developer does not need to understand its intricate details to build Swing GUIs. (But if you want to know, read on . . .)

While we don't expect (or advise) the majority of developers to create new look-and-feel implementations, we realize PL&Fis a very
powerful feature for a subset of applications that want to create a unique identity. As it turns out, PL&Fis also ideally suited for use in
building GUIs that are accessible to users with disabilities, such as visually impaired users or users who cannot operate a mouse.

In a nutshell, pluggable look-and-feel design simply means that the portion of a component's implementation that deals with the
presentation (the look) and event-handling (the feel) is delegated to a separate UI object supplied by the currently installed look-and-
feel, which can be changed at runtime.

The pluggable look-and-feel API

The pluggable look-and-feel API includes:

 Some small hooks in the Swing component classes.
 Some top-level API for look-and-feel management.
 A more complex API that actually implements look-and-feels in separate packages.

The component hooks

Each Swing component that has look-and-feel-specific behavior defines an abstract class in the swing.plaf package to represent its UI
delegate. The naming convention for these classes is to take the class name for the component, remove the "J" prefix, and append
æ,"UI." For example, JButton defines its UI delegate with the plaf class ButtonUI.

The UI delegate is created in the component's constructor and is accessible as a JavaBeans bound property on the component. For
example, JScrollBar provides the following methods to access its UI delegate:

1
2

public ScrollBarUI getUI()
public void setUI(ScrollBarUI ui)

This process of creating a UI delegate and setting it as the æ,"UI" property for a component is essentially the "installation" of a
component's look-and-feel.

Each component also provides a method which creates and sets a UI delegate for the "default" look-and-feel (this method is used by
the constructor when doing the installation):

1 public void updateUI()

A look-and-feel implementation provides concrete subclasses for each abstract plaf UI class. For example, the Windows look-and-feel
defines WindowsButtonUI, a WindowsScrollBarUI, and so on. When a component installs its UI delegate, it must have a way to look up
the appropriate concrete class name for the current default look-and-feel dynamically. This operation is performed using a hash table
in which the key is defined programmatically by the getUIClassID() method in the component. The convention is to use the plaf
abstract class name for these keys. For example, JScrollbar provides:

1
2
3

public String getUIClassID() {
 return "ScrollBarUI";
}

Consequently, the hash table in the Windows look-and-feel will provide an entry that maps "ScrollBarUI" to

"com.sun.java.swing.plaf.windows.WindowsScrollBarUI"

Look-and-feel management

Swing defines an abstract LookAndFeel class that represents all the information central to a look-and-feel implementation, such as its
name, its description, whether it's a native look-and-feel -- and in particular, a hash table (known as the "Defaults Table") for storing
default values for various look-and-feel attributes, such as colors and fonts.

Each look-and-feel implementation defines a subclass of LookAndFeel (for example, swing.plaf.motif.MotifLookAndFeel) to provide

Swing with the necessary information to manage the look-and-feel.

The UIManager is the API through which components and programs access look-and-feel information (they should rarely, if ever, talk
directly to a LookAndFeel instance). UIManager is responsible for keeping track of which LookAndFeel classes are available, which are
installed, and which is currently the default. The UIManager also manages access to the Defaults Table for the current look-and-feel.

The 'default' look and feel

The UIManager also provides methods for getting and setting the current default LookAndFeel:

1
2
3

public static LookAndFeel getLookAndFeel()
public static void setLookAndFeel(LookAndFeel newLookAndFeel)
public static void setLookAndFeel(String className)

As a default look-and-feel, Swing initializes the cross-platform Java look and feel (formerly known as "Metal"). However, if a Swing
program wants to set the default Look-and-Feel explicitly, it can do that using the UIManager.setLookAndFeel() method. For example,
the following code sample will set the default Look-and-Feel to be CDE/Motif:

1 UIManager.setLookAndFeel("com.sun.java.swing.plaf.motif.MotifLookAndFeel");

Sometimes an application may not want to specify a particular look-and-feel, but instead wants to configure a look-and-feel in such a
way that it dynamically matches whatever platform it happens to be running on (for instance, the. Windows look-and-feel if it is
running on Windows NT, or CDE/Motif if it running on Solaris). Or, perhaps, an application might want to lock down the look-and-feel
to the cross-platform Java look and feel.

The UIManager provides the following static methods to programmatically obtain the appropriate LookAndFeel class names for each of
these cases:

1
2

public static String getSystemLookAndFeelClassName()
public static String getCrossPlatformLookAndFeelClassName()

So, to ensure that a program always runs in the platform's system look-and-feel, the code might look like this:

1 UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());

Dynamically Changing the Default Look-and-Feel

When a Swing application programmatically sets the look-and-feel (as described above), the ideal place to do so is before any Swing
components are instantiated. This is because the UIManager.setLookAndFeel() method makes a particular LookAndFeel the current
default by loading and initializing that LookAndFeel instance, but it does not automatically cause any existing components to change
their look-and-feel.

Remember that components initialize their UI delegate at construct time, therefore, if the current default changes after they are
constructed, they will not automatically update their UIs accordingly. It is up to the program to implement this dynamic switching by
traversing the containment hierarchy and updating the components individually. (NOTE: Swing provides the
SwingUtilities.updateComponentTreeUI() method to assist with this process).

The look-and-feel of a component can be updated at any time to match the current default by invoking its updateUI() method, which
uses the following static method on UIManager to get the appropriate UI delegate:

1 public static ComponentUI getUI(JComponent c)

For example, the implementation of updateUI() for the JScrollBar looks like the following:

1
2
3
4

public void updateUI() {
 setUI((ScrollBarUI);
 UIManager.getUI(this));
}

And so if a program needs to change the look-and-feel of a GUI hierarchy after it was instantiated, the code might look like the
following:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

// GUI already instantiated, where myframe
// is top-level frame
try {
 UIManager.setLookAndFeel("com.sun.java.swing.plaf.motif.MotifLookAndFeel");

 myframe.setCursor(Cursor.getPredefinedCursor(Cursor.WAIT_CURSOR));

 SwingUtilities.updateComponentTreeUI(myframe);

 myframe.validate();

} catch (UnsupportedLookAndFeelException e) {

} finally {
 myframe.setCursor(Cursor.getPredefinedCursor(Cursor.DEFAULT_CURSOR));
}

Managing look-and-feel data

The UIManager defines a static class, named UIManager.LookAndFeelInfo, for storing the high-level name (such as. "Metal") and
particular class name (such as " com.sun.java.swing.plaf.MetalLookAndFeel") for a LookAndFeel. It uses these classes internally to
manage the known LookAndFeel objects. This information can be accessed from the UIManager via the following static methods:

1
2
3
4

public static LookAndFeelInfo[] getInstalledLookAndFeels()
public static void setInstalledLookAndFeels(LookAndFeelInfo[] infos) throws SecurityException
public static void installLookAndFeel(LookAndFeelInfo info)
public static void installLookAndFeel(String name, String className)

These methods can be used to programmatically determine which look-and-feel implementations are available, which is useful when
building user interfaces which allow the end-user to dynamically select a look-and-feel.

The look-and-feel packages

The UI delegate classes provided in swing.plaf (ButtonUI, ScrollBarUI, and so on) define the precise API that a component can use to
interact with the UI delegate instance. (NOTE: Interfaces were originally used here, but they were replaced with abstract classes
because we felt the API was not mature enough to withstand the concrete casting of an interface.) These plaf APIs are the root of all
look-and-feel implementations.

Each look-and-feel implementation provides concrete subclasses of these abstract plaf classes. All such classes defined by a particular
look-and-feel implementation are contained in a separate package under the swing.plaf package (for example,. swing.plaf.motif,
swing.plaf.metal, and so on). A look-and-feel package contains the following:

 The LookAndFeel subclass (for instance, MetalLookAndFeel).
 All look-and-feel's UI delegate classes (for example, MetalButtonUI, MetalTreeUI, and the like).
 Any look-and-feel utility classes (MetalGraphicsUtils, MetalIconFactory, and so on).
 Other resources associated with the look-and-feel, such as image files.

In implementing the various Swing look-and-feels, we soon discovered that there was a lot of commonality among them. We factored
out this common code into a base look-and-feel implementation (called " basic") which extends the plaf abstract classes and from
which the specific look-and-feel implementations (motif, windows, and so on.) extend. The basic look-and-feel package supports
building a desktop-level look-and-feel, such as Windows or CDE/Motif.

The basic look-and-feel package is just one example of how to build a pluggable look-and-feel; the architecture is flexible enough to
accommodate other approaches as well.

The remainder of this document will show how a look-and-feel package works at the generic level, leaving the details on the basic
package for a future document.

WARNING: All APIs defined below the swing.plaf package are not frozen in the 1.0.X version of Swing. We are currently cleaning up

those APIs for the version of Swing that will ship with JDK1.2beta4, at which time they will become frozen. So if you are developing
your own look-and-feel implementation using the 1.0.1 API, this is likely to affect you.

The LookAndFeel Subclass

The LookAndFeel class defines the following abstract methods, which all subclasses must implement:

1
2
3
4
5

public String getName();
public String getID();
public String getDescription();
public boolean isNativeLookAndFeel();
public boolean isSupportedLookAndFeel();

The getName(), getID(), and getDescription() methods provide generic information about the look-and-feel.

The isNativeLookAndFeel() method returns true if the look-and-feel is native to the current platform. For example, MotifLookAndFeel
returns true if it is currently running on the Solaris platform, and returns false otherwise.

The isSupportedLookAndFeel() method returns whether or not this look-and-feel is authorized to run on the current platform. For
example, WindowsLookAndFeel returns true only if it is running on a Windows 95, Windows 98, or Windows NT machine.

A LookAndFeel class also provides methods for initialization and uninitialization:

1
2

public void initialize()
public void uninitialize()

The initialize() method is invoked by the UIManager when the LookAndFeel is made the "default" using the
UIManager.setLookAndFeel() method. uninitialize()is invoked by the UIManager when the LookAndFeel is about to be replaced as the
default.

The Defaults Table

Finally, the LookAndFeel class provides a method to return the look-and-feel's implementation of the Defaults Table:

1 public UIDefaults getDefaults()

The Defaults Table is represented by the UIDefaults class, a direct extension of java.util.Hashtable, which adds methods for accessing
specific types of information about a look-and-feel. This table must include all the UIClassID-to-classname mapping information, as well
as any default values for presentation-related properties (such as color, font, border, and icon) for each UI delegate. For example,
following is a sample of what a fragment of getDefaults() might look like for a hypothetical look-and-feel in a package called " mine":

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

public UIDefaults getDefaults() {

 UIDefaults table = new UIDefaults();

 Object[] uiDefaults = {
 "ButtonUI", "mine.MyButtonUI",
 "CheckBoxUI", "mine.MyCheckBoxUI",
 "MenuBarUI", "mine.MyMenuBarUI",
 "Button.background",
 new ColorUIResource(Color.gray),
 "Button.foreground",
 new ColorUIResource(Color.black),
 "Button.font",
 new FontUIResource("Dialog", Font.PLAIN, 12),
 "CheckBox.background",
 new ColorUIResource(Color.lightGray),
 "CheckBox.font",
 new FontUIResource("Dialog", Font.BOLD, 12),
 }

 table.putDefaults(uiDefaults);

22
23
24
25

 return table;

}

When the default look-and-feel is set with UIManager.setLookAndFeel(), the UIManager calls getDefaults() on the new LookAndFeel
instance and stores the hash table it returns. Subsequent calls to the UIManager's lookup methods will be applied to this table. For
example, after making "mine" the default Look-and-Feel:

1 UIManager.get("ButtonUI") => "mine.MyButtonUI"

The UI classes access their default information in the same way. For example, our example ButtonUI class would initialize the JButton's
"background" property like this:

1
2

button.setBackground(
UIManager.getColor("Button.background");

The defaults are organized this way to allow developers to override them. More detail about Swing's Defaults mechanism will be
published in a future article.

Distinguishing between UI-set and app-set properties

Swing allows applications to set property values (such as color and font) individually on components. So it's critical to make sure that
these values don't get clobbered when a look-and-feel sets up its "default" properties for the component.

This is not an issue the first time a UI delegate is installed on a component (at construct time) because all properties will be
uninitialized and legally settable by the look-and-feel. The problem occurs when the application sets individual properties after
component construction and then subsequently sets a new look-and-feel (that is, dynamic look-and-feel switching). This means that
the look-and-feel must be able to distinguish between property values set by the application, and those set by a look-and-feel.

This issue is handled by marking all values set by the look-and-feel with the plaf.UIResource interface. The plaf package provides a set
of "marked" classes for representing these values, ColorUIResource, FontUIResource, and BorderUIResource. The preceding code
example shows the usage of these classes to mark the default property values for the hypothetical MyButtonUI class.

The UI delegate

The superclass of all UI Delegate classes is swing.plaf.ComponentUI. This class contains the primary "machinery" for making the
pluggable look-and-feel work. Its methods deal with UI installation and uninstallation, and with delegation of a component's geometry-
handling and painting.

Many of the UI Delegate subclasses also provide additional methods specific to their own required interaction with the component;
however, this document focuses primarily on the generic mechanism implemented by ComponentUI.

UI installation and deinstallation

First off, the ComponentUI class defines these methods methods for UI delegate installation and uninstallation:

1
2

public void installUI(JComponent c)
public void uninstallUI(JComponent c)

Looking at the implementation of JComponent.setUI() (which is always invoked from the setUI method on JComponent subclasses), we
can clearly see how UI delegate installation/de-installation works:

1
2
3
4
5
6
7
8
9

protected void setUI(ComponentUI newUI) {

 if (ui != null) {
 ui.uninstallUI(this);
 }
 ComponentUI oldUI = ui;
 ui = newUI;
 if (ui != null) {
 ui.installUI(this);

10
11
12
13

 }
 invalidate();
 firePropertyChange("UI", oldUI, newUI);
}

UI installation illustrated

 This article comes with a giant poster-size chart that illustrates the process installing a UI delegate. It can provide you with a
valuable overview of the delegate-installation process.

 To fold out the chart, just follow this link

The UI delegate's installUI() method is responsible for the following:

 Set default font, color, border, and opacity properties on the component.
 Install an appropriate layout manager on the component.
 Add any appropriate child subcomponents to the component
 Register any required event listeners on the component.
 Register any look-and-feel-specific keyboard actions (mnemonics, etc.)for the component.
 Register appropriate model listeners to be notified when to repaint.
 Initialize any appropriate instance data.

For example, the installUI() method for an extension of ButtonUI might look like this:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

protected MyMouseListener mouseListener;
protected MyChangeListener changeListener;
public void installUI(JComponent c) {
 AbstractButton b = (AbstractButton) c;
 // Install default colors & opacity
 Color bg = c.getBackground();
 if (bg == null || bg instanceof UIResource) {
 c.setBackground(UIManager.getColor("Button.background"));
 }
 Color fg = c.getForeground();
 if (fg == null || fg instanceof UIResource) {
 c.setForeground(UIManager.getColor("Button.foreground"));
 }
 c.setOpaque(false);
 // Install listeners
 mouseListener = new MyMouseListener();
 c.addMouseListener(mouseListener);
 c.addMouseMotionListener(mouseListener);
 changeListener = new MyChangeListener();
 b.addChangeListener(changeListener);
}

Conventions for initializing component properties

Swing defines a number of conventions for initializing component properties at install-time, including the following:

 All values used for setting colors, font, and border properties should be obtained from the Defaults table (as described in the
subsection on the LookAndFeel subclass).
 Color, font and border properties should be set if -- and only if -- the application has not already set them.

To facilitate convention No 1, the UIManager class provides a number of static methods to extract property values of a particular type
(for instance, the static methods UIManager.getColor(), UIManager.getFont(), and so on).

Convention No. 2 is implemented by always checking for either a null value or an instance of UIResource before setting the property.

The ComponentUI's uninstall() method must carefully undo everything that was done in the installUI() method so that the component
is left in a pristine state for the next UI delegate. The uninstall()method is responsible for:

 Clearing the border property if it has been set by installUI() .
 Remove the layout manager if it had been set by installUI() .
 Remove any subcomponents added by installUI() .
 Remove any event/model listeners that were added by installUI() .

 Remove any look-and-feel-specific keyboard actions that were installed by installUI() .
 Nullify any initialized instance data (to allow GC to clean up).

For example, an uninstall() method to undo what we did in the above example installation might look like this:

1
2
3
4
5
6
7
8
9

public void uninstallUI(JComponent c) {
 AbstractButton b = (AbstractButton)c;
 // Uninstall listeners
 c.removeMouseListener(mouseListener);
 c.removeMouseMotionListener(mouseListener);
 mouseListener = null;
 b.removeChangeListener(changeListener);
 changeListener = null;
}

Defining geometry

In the AWT (and thus in Swing) a container's LayoutManager will layout the child components according to its defined algorithm; this is
known as "validation" of a containment hierarchy. Typically LayoutManagers will query the child components' preferredSize property
(and sometimes minimumSize and/or maximumSize as well, depending on the algorithm) in order to determine precisely how to
position and size those children.

Obviously, these geometry properties are something that a look-and-feel usually needs to define for a given component, so
ComponentUI provides the following methods for this purpose:

1
2
3
4

public Dimension getPreferredSize(JComponent c)
public Dimension getMinimumSize(JComponent c)
public Dimension getMaximumSize(JComponent c)
public boolean contains(JComponent c, int x, int y)

JComponent's parallel methods (which are invoked by the LayoutManager during validation) then simply delegate to the UI object's
geometry methods if the geometry property was not explicitly set by the program. Below is the implementation of
JComponent.getPreferredSize() which shows this delegation:

1
2
3
4
5
6
7
8
9
10

public Dimension getPreferredSize() {
 if (preferredSize != null) {
 return preferredSize;
 }
 Dimension size = null;
 if (ui != null) {
 size = ui.getPreferredSize(this);
 }
 return (size != null) ? size : super.getPreferredSize();
}

Even though the bounding box for all components is a Rectangle, it's possible
to simulate a non-rectangular component by overriding the implementation of the contains() method from java.awt.Component. (This
method is used for the hit-testing of mouse events). But, like the other geometry properties in Swing, the UI delegate defines its own
version of the contains() method, which is also delegated to by JComponent.contains():

1
2
3

public boolean contains(JComponent c, int x, int y) {
 return (ui != null) ? ui.contains(this, x, y) : super.contains(x, y);
}

So a UI delegate could provide non-rectangular "feel" by defining a particular implementation of contains() (for example, if we wanted
our MyButtonUI class to implement a button with rounded corners).

Painting

Finally, the UI delegate must paint the component appropriately, hence ComponentUI has the following methods:

1
2

public void paint(Graphics g, JComponent c)
public void update(Graphics g, JComponent c)

And once again, JComponent.paintComponent() takes care to delegate the painting:

1
2
3
4
5
6
7
8
9
10
11
12

protected void paintComponent(Graphics g) {
 if (ui != null) {
 Graphics scratchGraphics =
 SwingGraphics.createSwingGraphics(g.create());
 try {
 ui.update(scratchGraphics, this);
 }
 finally {
 scratchGraphics.dispose();
 }
 }
}

Similarly to the way in which things are done in AWT, the UI delegate's update() method clears the background (if opaque) and then
invokes its paint() method, which is ultimately responsible for rendering the contents of the component.

Stateless vs. stateful delegates

All the methods on ComponentUI take a JComponent object as a parameter. This convention enables a stateless implementation of a
UI delegate (because the delegate can always query back to the specified component instance for state information). Stateless UI
delegate implementations allow a single UI delegate instance to be used for all instances of that component class, which can
significantly reduce the number of objects instantiated.

This approach works well for many of the simpler GUI components. But for more complex components, we found it not to be a "win"
because the inefficiency created by constant state recalculations was worse than creating extra objects (especially since the number of
complex GUI components created in a given program tends to be small).

The ComponentUI class defines a static method for returning a delegate instance:

1 public static ComponentUI createUI(JComponent c)

It's the implementation of this method that determines whether the delegate is stateless or stateful. That's because the
UIManager.getUI() method invoked by the component to create the UI delegate internally invokes this createUI method on the
delegate class to get the instance.

The Swing look-and-feel implementations use both types of delegates. For example, Swing's BasicButtonUI class implements a
stateless delegate:

1
2
3
4
5
6
7
8

// Shared UI object
protected static ButtonUI buttonUI;
public static ComponentUI createUI(JComponent c){
 if(buttonUI == null) {
 buttonUI = new BasicButtonUI();
 }
 return buttonUI;
}

While Swing's BasicTabbedPaneUI uses the stateful approach:

1
2
3

public static ComponentUI createUI(JComponent c){
 return new BasicTabbedPaneUI();
}

Pluggable Look-and-Feel summary

The pluggable look-and-feel feature of Swing is both powerful and complex (which you understand if you've gotten this far!). It is
designed to be programmed by a small subset of developers who have a particular need to develop a new look-and-feel
implementation. In general, application developers only need to understand the capabilities of this mechanism in order to decide how
they wish to support look-and-feels (such as whether to lock-down the program to a single look-and-feel or support look-and-feel
configuration by the user). Swing's UIManager provides the API for applications to manage the look-and-feel at this level.

If you're one of those developers who needs (or wants) to develop a custom look-and-feel, it's critical to understand these
underpinnings before you write a single line of code. We're working on providing better documentation to help with this process --
starting with this document, and continuing with others that will follow soon.

An Example

This example is taken from http://stackoverflow.com/questions/3066590/gui-not-working-after-rewriting-to-mvc

As you've discovered, the Model–View–Controller pattern is no panacea, but it offers some advantages. Rooted in MVC, the Swing
separable model architecture is discussed in A Swing Architecture Overview. Based on this outline, the following example shows an
MVC implementation of a much simpler game that illustrates similar principles. Note that the Model manages a single Piece, chosen
at random. In response to a user's selection, the View invokes the check() method, while listening for a response from the Model via
update(). The View then updates itself using information obtained from the Model. Similarly, the Controller may reset() the
Model. In particular, there is no drawing in the Model and no game logic in the View. This somewhat more complex game was
designed to illustrate the same concepts.

Addendum: I've modified the original example to show how MVC allows one to enhance the View without changing the nature of the
Model.

Addendum: As @akf observes, MVC hinges on the observer pattern. Your Model needs a way to notify the View of changes. Several
approaches are widely used:

In the example below, Model extends Observable for simplicity.-

A more common approach uses an EventListenerList, as shown in the Converter application and suggested by the large
number of EventListener subinterfaces and implementing classes.

-

A third option is to use a PropertyChangeListener, as shown here and here.-

Addendum: Some common questions about Swing controllers are addressed here and here.

1 import java.awt.BorderLayout;

http://stackoverflow.com/questions/3066590/gui-not-working-after-rewriting-to-mvc
http://en.wikipedia.org/wiki/Model-view-controller
http://en.wikipedia.org/wiki/Model-view-controller
http://stackoverflow.com/questions/2687871
http://en.wikipedia.org/wiki/Model-view-controller
http://robotchase.sourceforge.net/
http://en.wikipedia.org/wiki/Model-view-controller
http://en.wikipedia.org/wiki/Model-view-controller
http://en.wikipedia.org/wiki/Observer_pattern
http://java.sun.com/javase/6/docs/api/java/util/Observable.html
http://java.sun.com/javase/6/docs/api/javax/swing/event/EventListenerList.html
http://docs.oracle.com/javase/tutorial/uiswing/components/panel.html
http://java.sun.com/javase/6/docs/api/java/util/EventListener.html
http://docs.oracle.com/javase/7/docs/api/java/beans/PropertyChangeListener.html
http://stackoverflow.com/a/10523401/230513
http://stackoverflow.com/questions/5533581
http://stackoverflow.com/a/25556585/230513
http://stackoverflow.com/a/23416515/230513

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

import java.awt.Color;
import java.awt.Component;
import java.awt.EventQueue;
import java.awt.Graphics;
import java.awt.Graphics2D;
import java.awt.RenderingHints;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.util.Observable;
import java.util.Observer;
import java.util.Random;
import javax.swing.Icon;
import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
/**
* @see http://stackoverflow.com/q/3066590/230513
* 15-Mar-2011 r8 http://stackoverflow.com/questions/5274962
* 26-Mar-2013 r17 per comment
*/
public class MVCGame implements Runnable {

 public static void main(String[] args) {
 EventQueue.invokeLater(new MVCGame());
 }

 @Override
 public void run() {
 JFrame f = new JFrame();
 f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 f.add(new MainPanel());
 f.pack();
 f.setLocationRelativeTo(null);
 f.setVisible(true);
 }
}
class MainPanel extends JPanel {

 public MainPanel() {
 super(new BorderLayout());
 Model model = new Model();
 View view = new View(model);
 Control control = new Control(model, view);
 JLabel label = new JLabel("Guess what color!", JLabel.CENTER);
 this.add(label, BorderLayout.NORTH);
 this.add(view, BorderLayout.CENTER);
 this.add(control, BorderLayout.SOUTH);
 }
}
/**
* Control panel
*/
class Control extends JPanel {

 private Model model;
 private View view;
 private JButton reset = new JButton("Reset");

 public Control(Model model, View view) {
 this.model= model;
 this.view= view;
 this.add(reset);
 reset.addActionListener(new ButtonHandler());
 }

 private class ButtonHandler implements ActionListener {

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

 @Override
 public void actionPerformed(ActionEvent e) {
 String cmd = e.getActionCommand();
 if ("Reset".equals(cmd)) {
 model.reset();
 }
 }
 }
}
/**
* View
*/
class View extends JPanel {

 private static final String s = "Click a button."
 private Model model;
 private ColorIcon icon = new ColorIcon(80, Color.gray);
 private JLabel label = new JLabel(s, icon, JLabel.CENTER);

 public View(Model model) {
 super(new BorderLayout());
 this.model= model;
 label.setVerticalTextPosition(JLabel.BOTTOM);
 label.setHorizontalTextPosition(JLabel.CENTER);
 this.add(label, BorderLayout.CENTER);
 this.add(genButtonPanel(), BorderLayout.SOUTH);
 model.addObserver(new ModelObserver());
 }

 private JPanel genButtonPanel() {
 JPanel panel = new JPanel();
 for (Piece p : Piece.values()) {
 PieceButton pb = new PieceButton(p);
 pb.addActionListener(new ButtonHandler());
 panel.add(pb);
 }
 return panel;
 }

 private class ModelObserver implements Observer {

 @Override
 public void update(Observable o, Object arg) {
 if (arg == null) {
 label.setText(s);
 icon.color= Color.gray;
 } else {
 if ((Boolean) arg) {
 label.setText("Win!");
 } else {
 label.setText("Keep trying.");
 }
 }
 }
 }

 private class ButtonHandler implements ActionListener {

 @Override
 public void actionPerformed(ActionEvent e) {
 PieceButton pb = (PieceButton) e.getSource();
 icon.color= pb.piece.color;
 label.repaint();
 model.check(pb.piece);
 }
 }

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

 private static class PieceButton extends JButton {

 Piece piece;

 public PieceButton(Piece piece) {
 this.piece= piece;
 this.setIcon(new ColorIcon(16, piece.color));
 }
 }

 private static class ColorIcon implements Icon {

 private int size;
 private Color color;

 public ColorIcon(int size, Color color) {
 this.size= size;
 this.color= color;
 }

 @Override
 public void paintIcon(Component c, Graphics g, int x, int y) {
 Graphics2D g2d = (Graphics2D) g;
 g2d.setRenderingHint(
 RenderingHints.KEY_ANTIALIASING,
 RenderingHints.VALUE_ANTIALIAS_ON);
 g2d.setColor(color);
 g2d.fillOval(x, y, size, size);
 }

 @Override
 public int getIconWidth() {
 return size;
 }

 @Override
 public int getIconHeight() {
 return size;
 }
 }
}
/**
* Model
*/
class Model extends Observable {

 private static final Random rnd = new Random();
 private static final Piece[] pieces = Piece.values();
 private Piece hidden = init();

 private Piece init() {
 return pieces[rnd.nextInt(pieces.length)];
 }

 public void reset() {
 hidden = init();
 setChanged();
 notifyObservers();
 }

 public void check(Piece guess) {
 setChanged();
 notifyObservers(guess.equals(hidden));
 }
}
enum Piece {

203
204
205
206
207
208
209
210

 Red(Color.red), Green(Color.green), Blue(Color.blue);
 public Color color;

 private Piece(Color color) {
 this.color= color;
 }
}

Another Opinion

Following information is taken from http://stackoverflow.com/questions/23415221/is-actionlistener-in-controller-for-java-gui-app-
good-idea

MVC is not a "strict" pattern. There are different interpretations of the original pattern, and different derivatives like MVP or MVVM
that are often used (even when people say that they are using MVC).

The most important aspect is to separate the Model and the View. But the details about how they are connected may vary, depending
on the application case.

The most frequent question that arises for the MVC pattern is: "What is a Controller?"

The answer: "An accountant who got promoted"

From my personal experience, there's rarely a reason to have an explicit æ,"Controller" class. Forcing the Listeners to be accumulated
and summarized in one æ,"Controller" class has several severe drawbacks. In order to establish the connection between the GUI
components and the Model, you have two options: One option is to allow access to the view components in order to attach the
listeners:

gui.getSomeButton().addActionListener(myActionListener);

I think this is a no-go, because it exposes implementation details and hinders modifications. The other option is slighly better - namely
to offer methods that allow attaching listeners:

gui.addActionListenerToSomeButton(myActionListener);

But I think that this is questionable, because it still exposes the fact that there is a button. The problem might become more obvious
when you have, for example, a JTextField to enter a number, and later change this to be a JSlider: It will change the required Listener
types, although it should only be an issue of the view.

In Swing applications, I think that the Listeners can be considered as "little controllers". And I think it's perfectly feasible to have
anonymous listeners that directly call methods of the model (unless there's additional logic to be wrapped around these calls).

Having said that: I would not consider the example that you linked as a "good" example for MVC. First of all, because the chosen
example does not show the key point of MVC: The model does not contain a state, and the fact that the model in MVC usually is the
thing that has to be observed (and thus, as Listeners attached) does not become clear. And secondly, because the way how the
connection between the GUI and the Model is established is questionable due to the points mentioned above.

I liked the example at http://csis.pace.edu/~bergin/mvc/mvcgui.html . Parts of it could be questioned as well (for example, the use of
the generic Observer/Observable classes), but I think that it nicely shows the basic idea of MVC in a convincing way.

EDIT: There is no download of this example in form of a ZIP or so. But you can just copy&pastethe TemperatureModel,
TemperatureGUI, FarenheitGUI and MVCTempConvert into an IDE. (It assumes a CelsiusGUI to be present. This CelsiusGUI, is omitted
on the website, but structurally equal to the Farenheit GUI. For a first test, the line where it is instantiated may just be commented
out).

The option to add listeners is in this example offered by the abstract TemperatureGUI class. The actual listeners are created and
attached by the concrete FarenheitGUI class. But that's more or less an implementation detail. The key point here (that also aims at
the original question) is that the Listeners are created by the View, in form of inner classes or even anonymous classes. These listeners
directly call methods of the model. Namely, to set the temperature in Farenheit (for the Farenheit GUI), or to set the Temperature in
Celsius (for the Celsius GUI).

There are still some degrees of freedom. It's not a "perfect" or "universal" MVC example. But it is IMHO better than most other MVC
examples that I found so far, because it shows the important aspects nicely:

 The Model is Observable

http://stackoverflow.com/questions/23415221/is-actionlistener-in-controller-for-java-gui-app-good-idea
http://stackoverflow.com/questions/23415221/is-actionlistener-in-controller-for-java-gui-app-good-idea

 The View is an Observer
 The "Controllers" (that is, the Listeners in this case) are anonymous/inner classes that are soleley maintained by the view, and call
methods of the Model

In a more complex, general setup, one would not use the Observable/Observer classes. Instead, one would create dedicated listeners
and probably events for the model. In this case, this could be something like a TemperatureChangedListener and
TemperatureChangedEvent. The Observable/Observer classes have been used here for brevity, because they are already part of the
standard API.

Agin, note that there may be more complex application cases where the idea of MVC that is sketched in this small example has to be
extended slightly. Particularly, when there are tasks to be performed that go beyond just calling methods of the model. For example,
when the View contains several input fields, and this data has to be preprocessed or otherwise validated before it is passed to the
model. Such tasks should not be done by an anonymous listener. Instead, such tasks could be summarized in a class that then may be
called a æ,"Controller". However, attaching the actual listeners to the GUI components can still be done solely by the View. As an
overly suggestive example: This could then happen like

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

// In the view:
someButton.addActionListener(new ActionListener()
{
 @Override
 public void actionPerformed(ActionEvent e)
 {
 String s = someTextField.getText();
 Date d = someFormattedTextField.getDate();
 int i = someSlider.getValue();
 // The controller validates the given input, and
 // eventually calls some methods on the Model,
 // possibly using the given input values
 controller.process(s, i, d);
 }
});

	Java Swing MVC Usage

